Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Vet Immunol Immunopathol ; 269: 110726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341929

RESUMO

Probiotics are live microorganisms that, confer health benefits to the host when supplemented in adequate amounts. They can promote immunomodulation by inducing phagocyte activity, leukocyte proliferation, antibody production, and cytokine expression. Lactic acid bacteria (BAL) are important probiotic specimens with properties that can improves ruminant nutrition, productivity and immunity. The aim of the present study was to evaluate the immunomodulatory effect of the supplementation with Lacticaseibacillus casei CB054 in calve vaccinated against bovine infectious rhinotracheitis (IBR). Calve were vaccinated with a commercial IBR vaccine, on day 0 and received a booster dose on day 21. L. casei CB054 was orally administered (4 ×109 UFC) for 35 days, while a non-supplemented control group received Phosphate Buffer Saline (PBS). Stimulation of bovine splenocytes with L. casei CB054 markedly enhanced mRNA transcription levels of cytokines IL2, IL4, IL10 and IL17 genes. Calves supplemented with L. casei CB054 showed significantly higher (p < 0.05) specific anti-BoHV-1 IgG levels, higher serum neutralization, as well as higher mRNA transcription for IL2, IL4, IL10 and IL17 genes in Peripheral Blood Mononuclear Cells (PBMCs) comparing with control calves. Supplemented calve had an average weight gain of ∼14 kg more than non-supplemented during the experimental period. These results suggest that L. casei CB054 supplementation increase immunogenicity of a commercial IBR vaccine in cattle and improve weight gain.


Assuntos
Doenças dos Bovinos , Herpesvirus Bovino 1 , Rinotraqueíte Infecciosa Bovina , Lacticaseibacillus casei , Vacinas , Animais , Bovinos , Interleucina-10 , Interleucina-2 , Interleucina-4 , Leucócitos Mononucleares , Citocinas , Suplementos Nutricionais , Imunomodulação , Aumento de Peso , RNA Mensageiro , Doenças dos Bovinos/prevenção & controle
2.
J Mycol Med ; 34(1): 101451, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38043164

RESUMO

Antifungal resistance has often been found in animal sporotrichosis in Southern Brazil. The biological potential of compounds from plants of the Solanaceae family against infectious diseases is known, however, it is still unknown against Sporothrix brasiliensis. This study evaluated the anti-Sporothrix brasiliensis activity, synergism, cytotoxicity, and action mechanism of steroidal lactones (withanolides) and alkaloids isolated from these plants. Pure compounds of withanolide D (WNOD), physalin F (PHYF), withanicandin (WNIC), nicandin B (NICB), solasonine (SSON), and solamargine (SMAR) were tested against 12 Sporothrix brasiliensis isolated from cats (n = 11) and dogs (n = 2) through M38-A2 CLSI. For the compounds with the best activity, a checkerboard assay for synergism, sorbitol protection, and ergosterol effect for action mechanism; and MTT test for cytotoxicity were performed. The withanolides WNOD, PHYF, WNIC, and NICB were not antifungal, but SSON (MIC 0.125-1 mg/mL) and SMAR (MIC 0.5-1 mg/mL) were both fungistatic and fungicidal (MFC 0.5-1 mg/mL for both) against wild-type (WT) and non-WT isolates. The activity of SSON and SMAR was indifferent when combined with itraconazole. In the mechanism of action, cell wall and plasma membrane by complexation with ergosterol seemed to be two target structures of SSON and SMAR. SSON was selected for cytotoxicity, whose cell viability in MDBK cells ranged from 28.85 % to 101.75 %, and was higher than 87.49 % at concentrations ≤0.0015 mg/ml. Only the steroidal alkaloids SSON and SMAR were active against non-WT isolates, being promising antifungal candidates for the treatment of feline and canine sporotrichosis with low susceptibility to itraconazole.

3.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 60: e210215, 2023. graf, tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1518145

RESUMO

Both pregnancy and obesity can influence significant changes in the immune system. On this basis, the present study proposes to evaluate the humoral immune response of overweight pregnant mares in response to a commercial vaccine. Thirty pregnant Crioulo mares were separated according to body condition score (BCS) into overweight (BCS≥7/9) or lean-control (BCS= 5-6/9). In each group, the animals were subdivided into vaccinated and controls. The mares were vaccinated against EHV-1 in two doses spaced 21 days apart and had their blood collected monthly, for five months, for antibody evaluation. Both vaccinated groups had an increase in specific neutralizing antibodies after the vaccine. However, after the second dose, there was no increase in antibodies in any of the groups. Vaccinated overweight and lean-control mares did not differ at any time point. Therefore, this study demonstrated that obesity does not influence the humoral immune response in pregnant Crioulo mares.(AU)


Tanto a gestação quanto a obesidade podem influenciar o desenvolvimento de alterações significativas no sistema imune, portanto, o presente estudo teve como objetivo avaliar a resposta imune humoral de éguas gestantes com sobrepeso em resposta a uma vacina comercial. Trinta éguas Crioulas gestantes foram separadas de acordo com o escore de condição corporal (ECC) em éguas com sobrepeso (ECC≥7/9) e éguas controles (ECC=5-6/9) e, ainda, em cada grupo, os animais também foram separados em vacinados e controles. As éguas foram vacinadas contra o EHV-1 em duas doses com intervalo de 21 dias, sendo realizadas coletas de sangue mensalmente durante cinco meses para avaliação de anticorpos neutralizantes. Ambos os grupos vacinados tiveram aumento de anticorpos neutralizantes específicos após a vacina, porém, após a segunda dose, não foi observado aumento de anticorpos em nenhum dos grupos. Nenhuma diferença foi observada entre éguas vacinadas com sobrepeso e as éguas controles em nenhum momento. Assim, este estudo demonstrou que a obesidade não é um fator que influencia a resposta imune humoral de éguas Crioulas gestantes.(AU)


Assuntos
Animais , Feminino , Gravidez , Vacinas/farmacologia , Imunidade Humoral/fisiologia , Cavalos/imunologia , Prenhez/fisiologia , Herpesvirus Equídeo 1/patogenicidade , Sobrepeso/veterinária
4.
Res Vet Sci ; 136: 185-191, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33677208

RESUMO

The Bovine herpes virus type 5 glycoprotein D (gD) is essential for viral penetration into host permissive cells. The Herpes virus gD glycoprotein has been used for bovine immunization, being efficient in reduction of viral replication, shedding and clinical signs, however sterilizing immunity is still not achieved. Recombinant subunit vaccines are, in general, poorly immunogenic requiring additional adjuvant components. Interleukin 17A (IL17A) is a pro-inflammatory cytokine produced by T helper 17 cells that mediate mucosal immunity. IL17 production during vaccine-induced immunity is a requirement for mucosal protection to several agents. In this study, we investigated the potential of a recombinant IL17A to act as an adjuvant for a recombinant BoHV-5 glycoprotein D vaccine in cattle. Three cattle groups were divided as: group 1) rgD5 + alumen + rIL-17A; 2) rgD5 + alumen; and 3) PBS + alumen. The cattle (3 per group) received two doses of their respective vaccines at an interval of 21 days. The group that received rIL17 in its vaccine formulation at the 7th day after the prime immunization had significant higher levels of specific rgD-IgG than the alumen group. Addition of rIL17 also led to a significant fold increase in specific anti-rgD IgG and neutralizing antibodies to the virus, respectively, when compared with the alumen group. Cells stimulated with rIL17A responded with IL17 transcription, as well IL2, IL4, IL10, IL15, Bcl6 and CXCR5. Our findings suggest that the rIL17A has adjuvant potential for use in vaccines against BoHV-5 as well as potentially other pathogens of cattle.


Assuntos
Anticorpos Antivirais/imunologia , Doenças dos Bovinos/prevenção & controle , Encefalite Viral/veterinária , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 5/imunologia , Vacinas contra Herpesvirus/imunologia , Meningoencefalite/veterinária , Adjuvantes Imunológicos , Animais , Anticorpos Neutralizantes/imunologia , Bovinos , Encefalite Viral/prevenção & controle , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Bovino 5/genética , Imunização/veterinária , Interleucina-17/genética , Interleucina-17/imunologia , Meningoencefalite/prevenção & controle , Vacinas Sintéticas , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
5.
Probiotics Antimicrob Proteins ; 13(3): 655-663, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33608827

RESUMO

Bacterial spores of the genus Bacillus are being evaluated as adjuvant molecules capable of improving the immune response to vaccines. In this study, we investigate whether subcutaneously administered spores of B. toyonensis BCT-7112T could enhance a vaccine immune response in mice. Three groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: 40 µg of recombinant glycoprotein D (rgD) from bovine herpesvirus type 5 (BoHV-5) adsorbed in 10% aluminum hydroxide (alum) without B. toyonensis spores (group 1) and B. toyonensis (1 × 106 viable spores) + 40 µg of rgD adsorbed in 10% alum (group 2); and B. toyonensis (1 × 106 viable spores) without rgD (group 3). Group 2 showed significantly higher titers (P < 0.05) of total specific serum IgG, IgG2a, and neutralizing antibodies, when compared with the groups 1 and 3. A significantly higher (P < 0.05) transcription level of cytokines IL-4, IL-12, and IFN-γ was observed in splenocytes from mice that received the B. toyonensis spores in the vaccine formulation. In addition, stimulation of the macrophage-like cell line RAW264.7 with spores of B. toyonensis markedly enhanced the cell proliferation and mRNA transcription levels of IL-4, and IL-12 cytokines in these cells. Our findings indicated that the subcutaneous administration of B. toyonensis BCT-7112T spores enhanced the humoral and cellular immune response against BoHV-5 in mice.


Assuntos
Adjuvantes Imunológicos , Bacillus , Infecções por Herpesviridae/prevenção & controle , Vacinas Virais/imunologia , Animais , Bacillus/imunologia , Modelos Animais de Doenças , Herpesvirus Bovino 5 , Interleucina-12 , Interleucina-4 , Camundongos , Oligopeptídeos , Esporos Bacterianos/imunologia
6.
Vaccine ; 38(51): 8216-8223, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33172696

RESUMO

Spores of the genus Bacillus are molecules capable of increasing the vaccine adjuvanticity. Bovine herpesvirus type 5 (BoHV-5) is responsible for meningoencephalitis that causes important economic losses in cattle. BoHV-5 glycoprotein D (gD) is a target of vaccine antigen and plays an important role in host cell penetration. The present study aimed to evaluate the adjuvanticity of Bacillus toyonensis (B.t) spores, live and heat-killed, associated with a vaccine formulated with aluminum hydroxide (alum) and the recombinant BoHV-5 glycoprotein D (rgD) in an experimental murine model. Six experimental groups of mice were subcutaneously vaccinated on day 0 and received a booster on day 21 of the experiment, with the following vaccine formulations: rgD (40 µg) + live spores (2 × 109 CFU); rgD + killed spores; rgD + live spores + alum (2.0 mg); rgD + killed spores + alum; rgD + alum, and rgD + PBS. Mice from rgD + live spores group showed an increase in rgD IgG titers from the 21st day until the end of the experiment. The groups of live and killed spores, associated to alum, had similar levels of IgG titers with no significant difference between each other; however, by the 14th and 28th day until the end of the experiment, presented higher IgG titers in comparison to the rgD + alum group. Moreover, increased serum levels of IgG1, IgG2a, and IgG2b were detected in mice that received spores in the vaccine formulation. The spores associated with alum groups showed neutralizing BoHV-5 antibodies and high mRNA transcription of the cytokines IFN-γ (66-fold), IL-17 (14-fold), and IL-12 (2.8-fold). In conclusion, our data demonstrated that the B. toyonensis spores, live or killed, associated with alum increased the adjuvanticity for BoHV-5 rgD in mice, suggesting the use of B. toyonensis spores as a promising component for vaccine formulations.


Assuntos
Bacillus , Herpesvirus Bovino 1 , Herpesvirus Bovino 5 , Adjuvantes Imunológicos , Compostos de Alúmen , Animais , Anticorpos Antivirais , Bovinos , Imunidade , Camundongos , Esporos , Vacinas de Subunidades
7.
Vaccine ; 36(50): 7708-7714, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30381153

RESUMO

Bovine herpesvirus 5 (BoHV-5) is responsible for outbreaks of meningoencephalitis that cause important economic losses in young cattle. BoHV-5 glycoprotein D (gD5) is essential for attachment and penetration into permissive cells and targeting of host immune systems, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate the vaccinal immune response of vaccines formulated with the recombinant BoHV-5 gD (rgD5) in bovines. For the experiment, 72 heifers were randomly allotted into 6 different groups with 12 animals each. Group 1: vaccine formulated using inactivated BoHV-5 (iBoHV-5) adjuvanted with ISA50V2; Group 2: iBoHV-5 associated with 100 µg of rgD5 adjuvanted with ISA50V2; Group 3: 100 µg of rgD5 adjuvanted with ISA50V2; Group 4: 100 µg of rgD5 adjuvanted with Al(OH)3; Group 5: commercial vaccine; and Group 6: control group. Two doses were administered in a 26-day interval and the third after 357 days from primo vaccination. Cattle vaccinated with the vaccines formulated with iBoHV-5 plus rgD5 showed a significant (p < 0.01) five-fold increase in total immunoglobulin G (IgG) for BoHV-5, BoHV-1, and rgD5 as compared with the commercial and control groups. Also, a significant (p < 0.05) increase in IgG1 and IgG2a levels was induced in serum for rgD5. In addition, these same vaccines showed significant (p < 0.01) four-fold higher titers of BoHV-1 and -5 neutralizing antibodies. The results demonstrated that the rgD5 conserved important epitopes that were able to stimulate bovine humoral immunity response capable of viral neutralization of BoHV-1 and -5, suggesting it as a promising vaccine antigen to be used in vaccine for BoHV-1 and -5 endemic areas.


Assuntos
Doenças dos Bovinos/prevenção & controle , Infecções por Herpesviridae/veterinária , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Antígenos Virais/genética , Antígenos Virais/imunologia , Bovinos , Doenças dos Bovinos/imunologia , Feminino , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Herpesvirus Bovino 1/imunologia , Herpesvirus Bovino 5/imunologia , Esquemas de Imunização , Imunoglobulina G/sangue , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...